A DEDICATED STORAGE RING FOR FAR-IR COHERENT SYNCHROTRON RADIATION AT THE ALS*

Abstract
We present the concepts for a storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared wavelength range from about 200 µm to 1 mm. The 66 m circumference ring will use the ALS injector parasitically and will be located on top of the existing ALS booster synchrotron shielding. This area provides enough floor space for both the ring and the beamlines. According to theory, CSR can be produced in two ways: by shortening the bunch length down to values comparable with the SR wavelength of interest or by using longer bunches with non-gaussian longitudinal distributions. In our design approach the ring is able to operate in both regimes. Furthermore, the particular design of the dipole vacuum chamber allows greater transmission of the far-infrared radiation than in typical existing light sources. Finally, particular care is taken in improving beam stability and in reducing synchrotron radiation multiple reflections.

1 INTRODUCTION
In the last few years an always-increasing interest of the accelerator community has been addressed to coherent synchrotron radiation (CSR). Just as an example, people working in linear collider projects are carefully investigating the potentially dangerous effects that CSR can have on their bunch compressor schemes [1]. Others are instead interested in CSR as a new powerful source of synchrotron radiation to be used for experiments. Schemes using linacs as beam source, which have already demonstrated the capability of producing impressive amounts of CSR [2], belong to this category as well as the project of generating stable CSR in a storage ring presented in this paper. The idea of a CSR source based on a storage ring was first proposed in 1994 by J. Murphy but so far it has not realized. CSR production is presently limited to the far and very far infrared range. Vacuum chamber shielding limits the larger obtainable wavelength to few millimeters while the present capability of producing very short pulses constrains the minimum obtainable value within few hundred microns. One of the driving forces that triggered the idea of proposing this source for the ALS was that a very strong and dynamic community of potential far infrared users already exists and that the availability of such an intense source will open the way to a completely new set of possible experiments [3]. A strong scientific case involving eminent names of the far infrared community is being constructed.

The first observation of steady CSR at BESSY II [4] has recently demonstrated the feasibility of generating stable CSR in a storage ring.

The paper describes the main ideas for the design of a storage ring at the ALS dedicated to and optimized for the production of far-infrared CSR over the wavelength range from 200-1000 µm. In the proposed scheme the ring is located on top of the ALS Booster shielding, see Figure 1, and uses the ALS injector, with beneficial impact on the total cost. The scale of the project is expected to be comparable to a couple of ALS beamlines and the project itself can be considered as an extension towards the far infrared of the capabilities of the ALS.

Figure 1: IR ring location atop the ALS booster synchrotron. The ring circumference is 66 m.

2 GENERATING CSR IN THE ALS FAR-IR RING
Synchrotron radiation theory indicates two possible regimes for CSR production. The well-known equation:

\[
\frac{dP}{d\omega} = \frac{dP}{d\omega} \left[N + N(N-1)g(\omega) \right]
\]

(1)

*Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
†FSannibale@lbl.gov
indicates that, for a given frequency \(\omega \), the total power \(P \) emitted as synchrotron radiation, is given by the combination of an incoherent part, given by the product between the number of particles per bunch \(N \) and the single particle emitted power \(p \), and of a coherent part, which is practically proportional to \(N^2 \) and to a form factor \(g \) given by:

\[
g(\omega) = \left| \int_{-\infty}^{\infty} dz \, S(z) e^{i \omega \cos(\theta) z/c} \right|^2
\]

Equation (2) shows that the form factor, which ranges from 0 to 1, is essentially the square of the Fourier transform of the normalized longitudinal distribution \(S(z) \) of the bunch. The quantity \(\theta \) is the angle between the longitudinal axis \(z \) and the line connecting the source to the observation point. According to equation (1), generating CSR consists essentially in making \(g \) different than zero in the frequency range of interest. As anticipated, Equation (2) indicates two possible modes: shortening the bunches down to lengths comparable to the related synchrotron radiation wavelengths or, with significantly longer bunches, ‘distorting’ the longitudinal distribution in a controlled way in order to have non-zero spectrum components at the wavelengths of interest. It must be remarked that because of the quadratic dependence of CSR on \(N \), which is always a large number, even fairly small values of \(g \) can already give orders of magnitude enhancement compared with the incoherent emitted power case. The very promising results obtained at BESSY II [4] seem to belong to the second category. We have started a collaboration with the BESSY II group and we are now working together for a full characterization of the physics behind their results.

Table 1. ALS Far IR Ring main parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy [MeV]</td>
<td>300 – 700</td>
</tr>
<tr>
<td>Current [mA]</td>
<td>1 – 200</td>
</tr>
<tr>
<td>Particles/Bunch</td>
<td>5 (\times) 10^6 - 1 (\times) 10^9</td>
</tr>
<tr>
<td>Ring Length [m]</td>
<td>66</td>
</tr>
<tr>
<td>RF Frequency [GHz]</td>
<td>1.499</td>
</tr>
<tr>
<td>Harmonic Number (h)</td>
<td>330</td>
</tr>
<tr>
<td>Max. Cavity Voltage [MV]</td>
<td>2</td>
</tr>
<tr>
<td>Natural Emittance [m rad]</td>
<td>(\sim 5.0 \times 10^{-8})</td>
</tr>
<tr>
<td>Emittance Ratio</td>
<td>1</td>
</tr>
<tr>
<td>Min. Momentum Compaction</td>
<td>(< 10^{-6})</td>
</tr>
<tr>
<td>Periodicity</td>
<td>6</td>
</tr>
<tr>
<td>Dipoles/Quads/Sexts/Period</td>
<td>2/5/6</td>
</tr>
<tr>
<td>Bend Radius [m]</td>
<td>1.5578</td>
</tr>
<tr>
<td>IR Ports/Bend</td>
<td>3</td>
</tr>
</tbody>
</table>

In designing our CSR dedicated ring for the ALS both the approaches have been pursued. Table 1 shows the ring main parameters and their range of tuning. For the very short bunches a proper combination of low beam energy (300 MeV), high RF voltage (2 MV) and frequency (1.5 GHz) and relatively low momentum compaction (3 \(\times \) 10^4) can in principle give bunch lengths of \(\sim 70 \) \(\mu \)m. A critical issue in this regime is the possible lengthening effect and/or instabilities that wakefields can induce on the bunch. In particular CSR impedance seems to play a very important role. A carefully analysis of the effect is being performed thanks also to the collaboration of other people [5]. At the present time a maximum current per bunch of 10 \(\mu \)A has been assumed for this short bunch regime. As an example, Figure 2 shows the potential photon flux gain (\(\sim 5 \) order of magnitude) that the short bunch regime presents with respect to the case of a similar ring in incoherent synchrotron radiation regime with much longer bunches and 1 A stored current. The long wavelength cutoff is due to the vacuum chamber shielding. The RF voltage high value (2 MV) of this mode of operation can be achieved by the combined action of 4 normal conductive cavities or by a single cavity super conductive system. The pros and cons between the two options are still under evaluation.

As far as the ‘distorted’ bunch configuration is concerned, it must be remarked that the effective action of most of the distribution ‘distorting’ phenomena (vacuum chamber and CSR impedances, lattice non-linearities) increases in the presence of very low values of the momentum compaction \(\alpha_c \). The BESSY II results [4] are the experimental proof that in this low \(\alpha_c \) regime a stable distortion of the bunch longitudinal distribution can be obtained with consequent production of stable CSR. Starting from this observation we are designing our ring with the capability of complete control of this important quantity. A Double Bend Achromat lattice (DBA), see Figure 3, together with a number of sextupole families (and probably some octupole ones as well) will allow the proper tuning of the linear and of the most important non-linear terms of the momentum compaction. The tuning of other important parameters such as beam energy, current
per bunch and others will finally permit the optimization of this operation mode.

It must be pointed out that, because in the far IR the source size is diffraction limited, then the requirement of a small transverse emittance is strongly relaxed and it will be possible to operate the ring in full coupling with beneficial effects on the beam lifetime (Touschek).

Figure 3: Optical functions in the DBA lattice for the ALS far IR Ring.

3 FAR-IR TRANSMISSION, STABILITY AND MULTIPLE REFLECTIONS

The Far-IR beam lines are being designed to optimize the transmission of the synchrotron radiation at these frequencies. In particular, the dipole magnet vacuum chamber, see Figure 4, presents the very large vertical acceptance angle of 140 mrad (total) that allows 95% transmission of the photons at $\lambda = 1$ mm. The photons collected by the ~ 300 mrad horizontal acceptance mirror (visible in red in Figure 4) are then split in 3 different beams by the same number of downstream mirrors (not shown in Figure 4).

Figure 4: Dipole vacuum chamber and first mirror.

The peculiar design of this large acceptance dipole vacuum chamber shows an evident cavity like shape that of course resonates at several frequencies. MAFIA simulations have shown that the numerous resonant modes are very weakly coupled with the electron beam that passes far away from the cavity-like shape. A prototype of the dipole vacuum chamber will be constructed for RF bench measurements.

Particular effort is being put in reducing the noise and in increasing the stability in the Far-IR beam lines. Any aperture intercepting the photon beam generates intensity modulation in the beam line detectors in case of motion of the source (electron beam). For this reason the first mirror is designed with no slot or x-ray intercepting mask in front of it. The cooling of the mirror is sized in order to withstand, without losses in the optical quality, with the full synchrotron radiation heat load. In addition, because the distance between the source point and the user’s optical detection systems is much shorter in this ring that in most of the existing UV or X-ray dedicated synchrotron sources, the amplification of any angular motion of the source will be significantly reduced. Another beneficial effect on stability is coming from the relatively high emittance of the lattice that does not require strong focusing in the transverse plane. As a consequence the sensitivity of the orbit stability on fluctuations in the accelerator components will be smaller that in the very low emittance third generation light sources. Finally, active optical feedbacks, based on the successful scheme in operation at the ALS [6], will be used in all the beam-lines.

Multiple reflections and stray radiation collected by the beam-line mirrors can affect the quality of the Far-IR spectrum. Two different approaches for reducing the problem are being adopted. First, test of possible UHV compatible coatings for the vacuum chamber that completely or partially absorb the undesired Far-IR are being done. Second, possible sources of multiple reflections are being localized by ray-tracing studies and special local geometries (tooth shapes, enhanced roughness) are being studied for eliminating the problem.

4 REFERENCES